Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons.

نویسندگان

  • Natalia B Pivovarova
  • Huy V Nguyen
  • Christine A Winters
  • Christine A Brantner
  • Carolyn L Smith
  • S Brian Andrews
چکیده

In neurons, excitotoxic stimulation induces mitochondrial calcium overload and the release of pro-apoptotic proteins, which triggers delayed cell death. The precise mechanisms of apoptogen release, however, remain controversial. To characterize the linkage between mitochondrial calcium load and cell vulnerability, and to test the hypothesis that only a subpopulation of mitochondria damaged by calcium overload releases apoptogens, we have measured directly the concentrations of total Ca (free plus bound) in individual mitochondria and monitored in parallel structural changes and the subcellular localization of pro-apoptotic cytochrome c after NMDA overstimulation in cultured hippocampal neurons. Beyond transient elevation of cytosolic calcium and perturbation of Na+/K+ homeostasis, NMDA stimulation induced dramatic, but mainly reversible, changes in mitochondria, including strong calcium elevation, membrane potential depolarization, and variable swelling. Elevation of matrix Ca in the approximately one-third of mitochondria that were strongly swollen, as well as the absence of swelling when Ca2+ entry was abolished, indicate an essential role for Ca overload. Shortly after NMDA exposure, cytochrome c, normally localized to mitochondria, became diffusely distributed in the cytoplasm, coincident with the appearance of severely swollen mitochondria with ruptured outer membranes; under these conditions, cytochrome c was retained in intact mitochondria, implying that it was released mainly from damaged mitochondria. Consistent with the role of mitochondrial Ca overload, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone decreased Ca accumulation, prevented cytochrome c release, and was neuroprotective. These results support a mechanism in which delayed excitotoxic death involves apoptogen release from a subpopulation of calcium-overloaded mitochondria, whereas other, undamaged mitochondria maintain normal function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

P30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain

Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...

متن کامل

Cleavage of the Plasma Membrane Na+/Ca2+ Exchanger in Excitotoxicity

In brain ischemia, gating of postsynaptic glutamate receptors and other membrane channels triggers intracellular Ca2+ overload and cell death. In excitotoxic settings, the initial Ca2+ influx through glutamate receptors is followed by a second uncontrolled Ca2+ increase that leads to neuronal demise. Here we report that the major plasma membrane Ca2+ extruding system, the Na+/Ca2+ exchanger (NC...

متن کامل

Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons.

Glutamate-induced changes in intracellular free Ca2+ concentration ([Ca2+]i) were recorded in single rat hippocampal neurons grown in primary culture by employing the Ca2+ indicator indo-1 and a dual-emission microfluorimeter. The [Ca2+]i was monitored in neurons exposed to 100 microM glutamate for 5 min and for an ensuing 3 hr period. Ninety-two percent (n = 64) of these neurons buffered the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 24  شماره 

صفحات  -

تاریخ انتشار 2004